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The time independent Schrodinger equat ion expressed i n  parabol ic  

coord ina tes  f o r  a hydrogen atom i n  an electric f i e l d  was numerically 

in t eg ra t ed  f o r  t h e  s ta te  n=5, nl=3, n2=0, and m = l  t o  ob ta in  t h e  resonance 

energy Er and t h e  rate of i o n i z a t i o n  T f o r  f i e l d  i n t e n s i t i e s  ranging 4 

5 5 

-1 

from 8x10 t o  11x10 volts /cm.  It is  found t h a t  near t h e  resonance 

energy, T 

w e l l  known Weisskopf-Wfgner treatment: of metas tab le  scates. 

varies quadra t i ca l ly  with (E-E )2 i n  accordance w i t h  t h e  r 

When E i s  

nea r ly  equal  t o  Er9 t h e  wave func t ion  has  a node a t  t h e  ou te r  tu rn ing  

po in t  - no explanat ion i s  o f fe red .  A t  t h e  very h igh  f i e l d  i n t e n s i t i e s  

considered, t h e r e  was cons iderable  d i f f e r e n c e  between Er and t h e  energy 

ca l cu la t ed  by Rayleigh-Schrodinger pe r tu rba t ion  theory.  
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The spontaneous i o n i z a t i o n  of a hydrogen atom i n  a n  e lectr ic  f i e l d  

is an o ld  problem, but  i t  s t i l l  remains i n t e r e s t i n g .  

equation s e p a r a t e s  i n  pa rabo l i c  coordinates  and t h e  separated one dimen- 

s f o n a l  equat ions can b e  i n t e g r a t e d  numerically.  

t o  t h e  outward component of t h e  wave func t ion  and N 

systems i n s i d e  of t h e  ou te r  t u rn ing  po in t ,  can then  be c a l c u l a t e d  f o r  

var ious values of t h e  energy, E. The l i f e t i m e  of t h e  hydrogen atom is 

then taken t o  b e  T(E)  = No(E)/Io(E). 

t h e  value of E f o r  which T(E) has  a maximum vaJue. 

The Schrodinger 

The f l u x  Io corresponding 

t h e  number of 
0’ 

The resonance energys Er,  i s  then 

We f i n d  t h a t  near  t h e  resonance energy, t h e  ra te  of i o n i z a t i o n  

v a r i e s  q u a d r a t i c a l l y  wi th  (E-Er) i n  accordance w i t h  t h e  Weisskopf - 
Wigner treatment of me tas t ab le  energy states. We were s u r p r i s e d  t o  f i n d  

t h a t  t h e  wave f u n c t i o n  has  a node a t  t h e  o u t e r  t u rn ing  p o i n t  when t h e  

energy is almost equal  t o  E e 

t h e  l i f e t i m e s  are less than 10’’ sec, t h e r e  is a considerable  d i f f e r e n c e  

A t  t h e  ve ry  high f i e l d  i n t e n s i t i e s  where r 

between t h e  energy ca l cu la t ed  by Rayleigh-Schrodinger pe r tu rba t ion  theory 

and E e 

a l a r g e  number of states of both t h e  H and t h e  D atomic s p e c i e s .  We 

a l s o  w i l l  consider t h e  r e l a t e d  problem of t h e  s c a t t e r i n g  and cap tu re  

of an e l e c t r o n  by a proton. 

I n  a subsequent paper,  w e  w i l l  make a c c u r a t e  c a l c u l a t i o n s  f o r  r 

The p o t e n t i a l  energy of a hydrogen-like atom o r  i o n  of nuc lea r  

charge 2 placed i n  a uniform electric f i e l d  ( i n  t h e  z-direct ion)  of 

s t r e n g t h  F is V = - Z r-l + F z e 

a t  z = - (z /F~’  x = o = 

sadd le  po in t  is V = - 2(ZF)’ e 

This  p o t e n t i a l  has  a s a d d l e  po in t  

The v a l u e  of t h e  p o t e n t i a l  a t  t h e  yo 0 0 

Thus, on t h e  b a s i s  of c lass ical  mechanics, 
0 
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w e  might expect t h a t  t h e  hydrogen atom would spontaneously i o n i z e  i f  

E t h e  energy of t h e  atom, were g r e a t e r  than V * o r ,  equ iva len t ly ,  

t h e  atom would i o n i z e  i f  t h e  e lectr ic  f i e l d  s t r e n g t h  i s  g r e a t e r  than 

F = E / (a)  I I f  w e  approximate E by t h e  energy of t h e  atomic s ta te  

0 '  

2 
0 

2 2  2 i n  t h e  absence of t h e  e x t e r n a l  f i e l d ,  E(') = - 2 1-1 /(2ns, ) where n is  

t h e  p r i n c i p a l  quantum number and p i s  t h e  e f f e c t i v e  m a s s  of t A e  atom, 

then t h e  classical ion iz ing  f i e l d  F becomes F' = 2 p /(16n ). Be- 

cause of quantum mechanical leakage through t h e  p o t e n t i a l  b a r r i e r ,  

3 2  4 
0 0 

some spontaneous i o n i z a t i o n  can occur even when t h e  e x t e r n a l  f i e l d  i s  

very weak and a n  apprec i ab le  rate of i o n i z a t i o n  might occur when t h e  

f i e l d  s t r e n g t h  i s  considerably less than F . On t h e  o t h e r  hand, 

t h e  quantum mechanical problem is  sepa rab le  i n  pa rabo l i c  coordinates  

0 

and only a f r a c t i o n  of t h e  energy of t h e  atom i s  involved wi th  t h e  

motion ac ross  t h e  p o t e n t i a l  b a r r i e r  This argument i n d i c a t e s  t h a t  

t h e  f i e l d  corresponding t o  apprec i ab le  i o n i z a t i o n  might be l a r g e r  

than F There is  a l s o  t h e  p o s s i b i l i t y  (which w e  do no t  consider  

i n  t h e  p re sen t  paper) t h a t  t h e  rate of spontaneous i o n i z a t i o n  may 

0 

vary with p re s su re  when z 

between t h e  hydrogen atoms i n  t h e  gas .  

becomes comparable wi th  t h e  qean d i s t a n c e  
0 

1 

There may b e  some good experimental  d a t a ,  b u t  t h e  au tho r s  are only 

f a m i l i a r  with a few r a t h e r  o l d  r e fe rences  which do no t  provide accu ra t e  

information regarding t h e  rate of spontaneous i o n i z a t i o n  as a f u n c t i o n  

of f i e l d  s t r e n g t h  f o r  each of t h e  quantum states. From s t u d i e s  of f i e l d  
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emission2s3, hydrogen gas  i s  observed t o  be  h igh ly  ionized a t  f i e l d  

s t r e n g t h s  ranging from 1,08 FA f o r  n = 1 t o  2.2 FA f o r  n = 7 .  On t h e  

o t h e r  hand, t h e  S t a r k  Ef fec t  s p e c t r a l  l i nes  of atomic hydrogen cease 

t o  e x i s t  when t h e  f i e l d  s t r e n g t h  is considerably smaller than t h e  F '  

4 corresponding t o  t h e  w i t t i n g  state. A s  Bethe and Sa lpe te r  exp la in ,  

such s p e c t r a l  l i n e s  cease t o  e x i s t  when the! gate of spontaneous ioni-  

0 

z a t i o n  of t h e  emit t ing s ta te  becomes g r e a t e r  than t h e  rate of i t s  

r a d i a t i v e  t r a n s i t i o n s  (usua l ly  of t h e  o rde r  of 10 per second).  8 

Bethe and Salpeter '  have reviewed t h e  e a r l y  t h e o r e t i c a l  work on 

6 t h i s  problem. Already i n  1926, Schrodinger5 and Epstein used pe r tu r -  

ba t ion  theory and Wentze17 used t h e  WKB approximation t o  estimate t h e  

energy s h i f t  of a hydrogen atom i n  an e lec t r ic  f i e l d .  8 I n  1930, Lanczos 

used t h e  WKB approximation t o  c a l c u l a t e  t h e  rate of spontaneous ioniza-  

t i o n .  There have been many o t h e r  c a l c u l a t i o n s  s i n c e  t h a t  t i m e .  Alex- 

ander' has  c a r r i e d  out  t h e  most r igorous treatment f o r  t h e  mean-lifetime 

of t h e  ground s ta te  and h i s  method could be  extended t o  higher  quantum 

states of t h e  hydrogen atom. I n  t h e  p re sen t  paperJ  we determine t h e  

rate of i o n i z a t i o n  i n  a simpler and more d i r e c t  f a s h i o n  by numerically 

i n t e g r a t i n g  t h e  Schrodinger equat ion.  I n  p r i n c i p l e ,  our procedure has  

t h e  advantage t h a t  one can determine t h e  rate of i o n i z a t i o n  ( f o r  a f i x e d  

external f i e l d )  as a f u n c t i o n  of energy and o b t a i n  t h e  dev ia t ions  from 

t h e  f a m i l i a r  Weisskopf-Wigner quadra t i c  r e l a t i o n s h i p  as Er - E becomes 

l a r g e .  Here E is t h e  resonance energy which p l a y s  t h e  r o l e  of t h e  

energy level af t h e  pseudo-stationary atomic state. 

r 
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I n  t h e  presence of t h e  e lectr ic  f i e l d ,  a l l  of t h e  d l s c r e t e  atomic 

energy levels become narrow bands of dense continuum which become wider 

and more d i f f u s e  as t h e  e lec t r ic  f i e l d  becomes more intense. A resonance 

energy Er i s  t h e  cen t ro id  of a band. K a t 0  has shown" t h a t  t h e  Rayleigh- 

Schrodinger p e r t u r b a t i o n  series f o r  t h e  S t a r k  E f f e c t  energy provides  

an asymptotic approximation t o  Er.  

h igher  o rde r  terms i n  powers of h2 and co r rec t ed  f o r  t h e  0 to  

The WKB formulat ion ( including 

range 

of t h e  p a r a b o l i c  coordinates ,  but  ignoring t h e  r eg ion  of space where t h e  

e l e c t r o n  i s  f r e e )  provides another  $ype of asymptotic approximation t o  

Beckenstein and Krieger3 have found t h a t  such a WKB treatment Er e 

including a l l  of t h e  i n t e g r a l s  of O(h ) agrees  exac t ly  

Schrodinger p e r t u r b a t i o n  energies  through terms of O(F ) .  

po in t  o u t  t h a t  f o r  t h e  ground s t a t e  of hydrogen, Mendelsohn'sl l  calcu- 

l a t i o n  of t h e  Rayleigh-Schrodinger energy through terms of O(F ) agrees  

wi th in  one percent  with Alexander's' accurate c a l c u l a t i o n  of E 

f i e l d  s t r e n g t h s  comparable wi th  Fo- 

t h a t  t h e  S t a r k  E f f e c t  energy s h i f t  is  almost unaffected by t h e  p a r t  of 

t he  p o t e n t i a l  energy beyond t h e  ou te r  t u rp ing  p o i n t  where t h e  e l e c t r o n  

is  f r e e .  

4 with the Rayleigh- 

4 They a l s o  

10 

up t o  r 
From t h e s e  r e s u l t s  w e  conclude 

I n  order  t o  c a l c u l a t e  t h e  ra te  of spontaneous i o n i z a t i o n  of a par- 

t i c u l a r  quantum s ta te  i n  t h e  presence of a n  e lec t r ic  f i e l d  of s p e c i f i e d  

s t r e n g t h ,  i t  i s  necessary t o  s o l v e  t h e  Schrodinger equation corresponding 

t o  a number of values of t h e  energy ly ing  c l o s e  t o  E r 

The Schrodinger equation, (H-E)" = 0 ,  f o r  the hydrogen-like atom 

i n  t h e  uniform e lec t r ic  f i e l d  ( i n  t h e  z-direct ion)  i s  sepa rab le  i n  t h e  
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4 parabo l i c  coordinates  C = r + z ,  rl = r - z ,  and Cp i n t o  t h e  equations 

and 

where 

and 

n 

Here Z is t h e  s e p a r a t i o n  constant ;  m is  t h e  a b s o l u t e  v a l u e  of t h e  

magnetic quantum number; and n and n are t h e  pa rabo l i c  quantum num- 
1 2 

1 ! 

ber s .  The p r i n c i p l e  quantum number of t h e  s ta te  is  n =e 4- n 4- m 4- 1. 
nl 2 

The complete unnormalized wave f u n c t i o n  €or t h e  atom i s  

It is  convenient t o  normalize @ (C) so  t h a t  
n1 9m 

M 
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Figure  1 shows a schematic drawing of V and V i= n f o r  d i f f e r e n t  

values  of m A s  f a r  as t h e  rate of spontaneous ion iza t ion  is concerned, 

t h e  behaviour near  t h e  o r i g i n  is r e l a t i v e l y  unimportant,  The classical 

turn ing  po in t s  correspond t o  va lues  of n f o r  which V = E / 4 ,  There 

is always an  ou te r  tu rn ing  poin t  qOt f o r  a very l a r g e  va lue  of q and 

an index turning po in t  q f o r  an in te rmedia te  va lue  of q e I n  addi- 

t i on ,  f o r  m 1 t h e r e  is a turn ing  poin t  qct f o r  a very small va lue  

of q . 

rl 

it, 

The number of systems which l i e  wi th in  t h e  ou te r  tu rn ing  poin t  

is  
2n CO 

0 0 0 
N 0 = - $  P d$ P dt; F t ( t ;  -k q) Y*Y dq 

The f l u x  of systems passing through a su r face  of constant  q i s  

I.= P p d A q  
S 

Here J is  t h e  cu r ren t  dens i ty  



Figure  1, Schematic Drawings of t h e  P o t e n t i a l  Epergy Funct ions W., 
i 

V f o r  D i f f e ren t  Values of m , ' t h e  abso lu te  v a l u e  of t h e  

and 

rl 

magnetic q x R t L l i z  iiuiliber 0 

a ' "  



Or making use of E q s .  ( 5 )  and (6), 
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I. THE SCHRODINGER EQUATION FOP I;  

Schrodinger equation f o r  a system w$$h bonrqcl sfat;eS, At: F: 0 and 

1) From pe r tu rba t ion  theory, fhrougq t;h@ P;hFrd prder  of the f i e l d  

+ (F3p2/64 E 8, 

Here E = (-2W)1'2. Basu" calcu1aCed tbs anevgr through t h e  fourth 

orde r ,  However, he expanded t h e  secqlw qquatlloq and the re fo re  be 

l a t e d  t h e  energy through t h e  third ordw, obta$nsd $he t h i r d  prdex 



However, Bethe and Sa lpe te r4  on&y g+ve Z1 thrwgh the second ordeT. 

2) Probably t h e  b e s t  method of obtainSng 4, bo high  p ~ ? e c i l s i ~ n  fs 

t h e  power-seyies boundary-condition method l4 ' 

t o  t h e  s o l u t i o n  of t h i s  problem. Alexander a s s w e d  @ cmn be 

expressed i n  terms of a power s e r i e s  . Then 

wbMh Alwan#ey9 asIqpeqtd 

"$ rP 
30 

30 Unfortynately,  Alexander' omOfte4 t h e  factor 4 a19 E m u  @is p q q r  

series. Since t h i s  factor i s  required i n  w4er t o  s q ~ ; t s f ~  the $qdic$al 

equat ions,  h i s  r ecp r s ion  r e l a t i o n  Eq. (42) is wrong; qxqe;pt for cases 

where m = 0. 

s $ m e  numerical resul ts  are oply gtven For tbe grf~um4 s@a$q 04 hydrogeny 

The co r rec t  recurs ion  r e l a t i o n s  are givetl by aqr Egs, (8; - ( $ 0 ) .  

Tbis dgeq not qffsct the yema+q,de?7; OB 4&mnder'g pspqq 

Subs t i t u t ing  t h i s  power series i n t o  Eq, flQ) laads t p  the four- tqm 

recu r s ion  r e l a t i o n s ,  

FOX- l a r g e  values o f  C9 the value of qn approgches ZerOp Srswawer p 
arW 

it i s  found t h a t  i f  t h e  correct: value of I: lie8 bemyan, &WQ trQit1 1 



values ,  f o r  one t r i a l  va lue  t h e  series d iverges  s o  as t o  make 4, 

approach + 
approaches - 03 . 

n l  ,m 
as 2; becomes l a rge ;  f o r  t h e  o ther  t r i a l  va lue  CP 

nl ¶rn 
Alexander proves t h i s  by showing t h a t  o n l y - t h e  f i r s t  

few a ' s  a l t e r n a t e  i n  s i g n  s o  t h a t  beyond a c r i t i c a l  value of k a l l  

of t h e  a 's we e i t h e r  p o s i t i v e  o r  nega t ive ,  Furthermore, beyond a 

k 

k 
c r i t i a a l  va lue  of k, t h e  abso lu te  va lue  of ak is  g r e a t e r  than 

bk = (Zp/2n)=>/k! where t h e  b 

expansion of exp(ZpC/2n). Thus, t h e  power-series boundary-conditiqn 

technique can be used t o  ob ta in  Z1to a high degree of precision. 

Eq. (12) provides an exce l l en t  i n i t i a l  t r i a l  va lue  s f  8 

k are t h e  c o e f f i c i e n t s  i n  t h e  power series k 

1' 

3) The WKB procedure i s  t h e  o l d e s t  method f o r  determining Z1. 

L t  was f i r s t  used by Wentze17; l a t e r  by Rice and and Bai ley ,  
t .  * 

I Hiskes, and f i i ~ i e r e ; . ' ~ , ~ a n d  r ecen t ly  by Bekenstein and Ksieger3. E;q. (1) 

is a "two-turnlrg-goin.t" Schrodinger equat ion similar t o  t h e  equat ion  

f o r  t h e  v i b r a t i o n a l m o t i o n  of a diatomic molecule. 

t h e  quant iza t idn  ru les ,  Bekenstein and Krieger made t h e  Langer traps- 

formation from 5 t o  x = loge(<)  s o  t h a t  t h e  range of t h e  independent 

v a r i a b l e  becomes - 
terms s o  as t o  make CP 

f o r  Z which they 'obtained (but  unfor tuna te ly  d id  not  publ ish)  are 

accura t e  through t h e  f o u r t h  power i n  t h e  f i e l d  s t r e n g t h ,  o r  one order  

b e t t e r  than  the  b e s t  cu r ren t  r e s u l t s  from per tu rba t ion  theory [Eq. (IZ)], 

Before applying 

< x < co e They a l s o  included Dunham's co r rec t iop  
h 

4 accura t e  through terms i n k  . The expres8;lons 
, *  nlYm 

1 

f 

.. . 



* 
Trea t ing  both Eq. (1) and Eq. (2) by t h i s  s o r t  of cor rec ted  WKB 

procedvre, Bekenstein and Krieger3 obtained expressions f o r  t h e  weak 

field limit of t h e  energy levels which agree  through terms of t h e  

order of F wi th  the  pe r tu rba t ion  ca l cu la t ions .  The WKB t reatment  4 

is par t icuLar ly  accu ra t e  when appl ied t o  pe r tu rba t ions  of e i t h e r  h y d r q e n  

atoms o r  s h p l e  harmonic o s c i l l a t o r s ,  s i n c e  t h e  formulat ion without 

tbe Du*am cor rec t ions  g ives  t h e  exact energy of t h e  unperturbed 

sysfhmz. 

From per tu rba t ion  theory,  through t h e  f i r s t  order  of t h e  f i e l d  

strength, 

where & -  ( - 2 ~ E ) l ' ~ .  Le t t i ng  s = E <  and 
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and 

Then since 

= (m-l-2kfl) (m-t-k) ! (k ! R = k  

= - (m+k)!(m-t-k+1)!2(k!)-1 R = k+l 

= -  (m-t-k-1) .P (m4-k) !2 [ (k-1) ! I-', R = k-1 

= 0 for a l l  other values of R , 

it follows that through the first order of the field strength, 

(21) 

- ~p i-4~6n1(n1~+l) + (m+l) (mf.2) I 

4- e * * e  

E q ,  (22) is useful in the evaluation of No from Eq. (7). 
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11. THE SCHRODINGER EQUATION FOR q 

The Schrodinger equation i n  the  rl v a r i a b l e ,  Eq. (2) ,  has no 

d i s c r e t e  energy s ta tes  s i n c e  V approaches - M as - F n f 8  when rl 

becomes l a r g e .  

has  a maximum va lue  (V 1 

A t  some intermediate  value no ,  t h e  e f f e c t i v e  po ten t i a$  

I f  m = 2 ,  then  rlo = 2[(Z-Zl)fF] 1 f  2 , r l o  
P (V,> 0 = - ?[ (Z-Z1)F]1'2, and t h e  classical  ion iz ing  f i e l d  [where 

2 (Vn)o = E f 4 1  is E'" = E f[4(Z-Z1)l. 

o rder  t o  determine rl it is  necessary t o  so lve  a cubic  equat ion.  Note 

t h a t  because of t h e  p a r t i t i o n i n g  of t h e  energy i n t o  the  < , 
0 degrees  of freedom, F" is  g rea t e r  than F . 

I f  m is no t  equal  t o  un i ty ,  i n  
0 

0 

, and 

0 0 

9 Alexander expressed x (q)  as a power series having t h e  same 
n2 3m 

func t iona l  form as Eq. (13) 

Eqs. (14)-(16) which are modified s o  t h a t  (Z-Z1) r ep laces  Z1 and -F 

rep laces  F. For weak f i e l d s ,  Alexander found a s i g n i f i c a n t l y  l a r g e  

range ko < k < k 

where lakl > bke 

t o  e i t h e r  4- a o r  - depending upon t h e  s i g n  of t h e  a Is i n  t h e  range 

k < k < kla The weaker t h e  f i e l d ,  t h e  l a r g e r  i s  kle Thus, f o r  weak 

f i e l d s  the s i g n  of the ak's i n  t h f s  reg ion  provides upper and lower 

bounds t o  t h e  "energy" of t h e  atom. 

p l i c a b l e  t o  s t rong  f i e l d s  where t h e  range k 

and ind i s t ingu i shab le .  For values of k > k19 t h e  s i g n s  of t h e  a 

o s c i l l a t e  corresponding t o  t h e  o s c i l l a b i o n s  of t h e  wave func t ion  values 

The c o e f f i c i e n t s  a are then given by k 

i n  which a l l  of t h e  akvs  have t h e  same s i g n  and 

I f  k were i n f i n i t e ,  then t h e  series would d iverge  

1 

1 

k 

0 

This c r i t e r i o n  is no longer ap- 

< k < k becomes small 
0 1 

k 

of rl beyond t h e  ou te r  tu rn ing  poin t ,  not. 



1 4  

Beyond t h e  o u t e r  t u rn ing  po in t ,  i t  is convenient t o  express  

(q) i n  t h e  WKB-type func t iona l  form 
xn2 sm 

Here a is  t h e  phase s h i f t  (a func t ion  of t h e  energy),  C i s  t h e  nom- 

al izsr t ion cons t an t ,  and W is  a func t ion  of TI . S u b s t i t u t i n g  t h e  

of Eq. (23) i n t o  t h e  Schrodinger equat ion (2) and l e t t i n g  
'n2 ,m 

it fol lows t h a t  

2 
2 2 1 d2W d w ) ]  =s G w 4-45  [x- - 3 (dri 

drl 

The WKB series corresponds t o  expanding W i n  powers of i& , 

where 

1f 2 W = G  
0 

2 

dn 

d 5 -3f2 dG 1 -3f2 _dG 
2 W i = -  dn 1-G 48 all]' -aG 
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Here W2, W are t h e  Dunham18 c o r r e c t i o n  terms t o  t h e  u s u a l  WKB 4' 
treatment ( i n  Dunham's n o t a t i o n  our W 

provide a n  asymptotic approximation t o  x 
f o r  va lues  of q s l i g h t l y  l a r g e r  t han  r) 

is h i s  y,) Eqs. (23) and (26) n 

which converges r a p i d l y  n2 3m 

o t  
9 For s t rong  f i e l d s ,  Alexander used t h e  power series s o l u t i o n  f o r  

f o r  va lues  of q less than  some po in t  rl (where ?lP is s l i g h t l y  

1" 

xn2 ,m P I 

g r e a t e r  t han  q ) and t h e  WKB-type s o l u t i o n  f o r  q g r e a t e r  than q 

The values of C and a are chosen by r equ i r ing  t h a t  a t  r) 

Xn2,m and dXnZ,m 

f o r  W a f t e r  t h e  f i r s t  Dunham c o r r e c t i o n  term, W 

workers 8316317 who have used t h e  WKB technique 

Ot 

t h e  func t ions  1 

/dq are continuous Alexander t runca ted  t h e  series 

Other r e sea rch  
2 O  

k 
f o r  q g r e a t e r  than 

qot have considered W = W 
0 

* 
Bechenstein and Krieger' used t h e  WKB technique f o r  Q less than 

with I4 t runca ted  a f t e r  W 4  e Before applying t h e  WKB t reatment ,  
' lot 

however, they made t h e  Eanger t ransformation from q t o  y = loge(q) .  

This  improved t h e  accuracy of t h e i r  quan t i za t ion  cond i t ion  f o r  t h e  

energy a 
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111. DIRECT INTEGRATION OF THE SCHRODINGER EQUATION FOR q 

The Schrodinger equation f o r  q can a l s o  b e  d i r e c t l y  i n t e g r a t e d .  

A t  ?l = 0 ,  t h e  v a l u e  of x 
t h e  terms - E / 4  and - Fq/8 i n  Eq.(2) can b e  neglected and x 
approaches 

2 [ l ~ ( l - Z ~ ) q ] ” ~  which can be expanded i n  t h e  form 

must b e  zero,  For s m a l l  va lues  of q 
n2 9m 

n2 3m 

q”’ t i m e s  a n  m-th order  Bessel func t ion  of argument 

Numerov’s method” can then be  used t o  i n t e g r a t e  Eq. (2) from q = 0 

t o  l a r g e  vaques of q and o b t a i n  x (q) f o r  given values of E and 

F. If w e  t a k e  t h e  i n t e r v a l  s i z e  of rl t o  b e  d then  t h e  Numerov 

d i f f e r e n c e  equat ion corresponding t o  Eq. (2)  is  

n2 

I f  xn (kd) and x ( (k- l )d)  were accura t e ,  t h e  e r r o r  i n  x ( (k+l)d)  

might b e  expected t o  b e  of t h e  order of (d /240)d6xn 9m/dq - The two 
n2 s m  n2 sm 

6 6 2 5 m  

2 
i n i t i a l  va lues  (d) and xn (2d)  are taken from Eq. (30).  How- 

9 Xn2,m 2 sm 
ever, s i n c e  Eq. (30) is  only v a l i d  f o r  very s m a l l .  va lues  of q (of t h e  

order  of 10-7ao), t h e  i n i t i a l  va lue  of d must b e  taken t o  be extremely 

s m a l l .  As q becomes l a r g e r ,  t h e  v a l u e  of d can be  r a p i d l y  increased 

without any apprec iab le  l o s s  of accuracy. 
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Calcu la t ions  w e r e  made f o r  t he  state n = 5 ,  m = 1, na = 3,  and 

n = 0 (which is  a hybridized mixture of 5p, 5d, 5 f ,  and 5g s p h e r i c a l  

wave f u n c t i o n s ) ,  

2 

A rough estimate of t h e  resonance energy f o r  va r ious  

va lues  of t h e  f i e l d  s t r e n g t h  w a s  obtained from p e r t u r b a t i o n  theory. In 
-7 t h e  Numerov i n t e g r a t i o n  of t h e  rj equation, d w a s  v a r i e d  from 10 a 

near rj = 0 t o  0.01 a. a t  n o t o  
0 

Beyond not$ t h e  v a l u e  of d was  taken 

t o  l i e  between l a and 3 a . Simpson's Rule2' (with a n  e r r o r  of 
0 0 

5 6 around (d /180)d xn Jdq6 pe r  i n t e r v a l )  w a s  then used toge the r  with 

Eq. ( 7 )  t o  determine N . 2 

0 

I n  .comparing our numerically determined x wi th  t h e  f u n c t i o n a l  n2 ,m 
form given by Eq. ( 2 3 ) ,  i t  is  convenient t o  d e f i n e  C as t h e  R - th R 
maximum (beyond t h e  o u t e r  t u rn ing  p o i n t )  of (pF/4) 9/4 r j1 /4a  In 

'n2 ,m 
2 t h e  l i m i t  as R becomes l a r g e ,  W approaches G which in. t u rn  approaches 

(pFI4)n and CR approaches C e Thus, when R = 30 w e  found t h a t  CR 

had converged t o  w i t h i n  one percent  of i t s  f i n a l  value. However, our 

procedure f o r  numerical i n t e g r a t i o n  w a s  n o t  s u f f i c i e n t l y  a c c u r a t e  t o  

enable us  t o  o b t a i n  a c c u r a t e  values  of t h e  phase s h i f t  a e That i s ,  

t h e  va lues  of a which w e  obtained d i d  n o t  vary smoothly with energy 

i n  t h e  v i c i n i t y  of a resonahce. 



IV. THE RATE OF SPONTANEOUS I O N I Z A T I O N  

Now l e t  us  consider t h e  l i f e t i m e  of a quasi-s ta t fonary s ta te  from 

t h e  Weisskopf -Wigner219 22 s t andpo in t  c/ Beyond t h e  ou te r  turning po in t  

w e  can express x 
x 

(q) as a l i n e a r  combination of a n  outgoing wave 
n2 ¶ m  

i9 and a n  incoming wave x 
0 

According t o  Eq. ( 2 3 ) ,  i f  E is real, then  

1 * 
A(E> = 7 C exp(ia(E))  = B(E)  

and 

(339 

Since x i s  n e c e s s a r i l y  real f o r  rea1 values of E i t  fol lows from 

Eq. (11) t h a t  t h e  n e t  f l u x  I i s  zero;  o r ,  t h e  outward f l u x  I (cal-  

cu la t ed  w i t h  A(E)x0) is  equal  t o  minus t h e  inward flux I. (ca l cu la t ed  

with B(E)xi) 

n2 9m 

0 

1 

However9 rff E i s  complex, then i t  i s  possibEe f o r  A(E) t o  remain 

f i n i t e  w h i l e  B(E) = 0 Indeed, t h i s  s i t u a t i o n  occurs when t h e  energy 

is  equal  t o  E - - i where E i s  t h e  resonance energy and p i s  t h e  
C - r 

half-width of t h e  energy wave packet ,  

func t ion  con ta ins  only the  outgoing component and r ep resen t s  a hydrogen 

atom d i s s o c i a t i n g  i n t o  a proton plus  a n  e l e c t r o n ,  

t h i s  wave func t ion  i s  exp(-i(E /&>e) =: e ~ p ( - ( F / & ) t )  exp(-f(Er/&)t) a 

Thus, f o r  E = Ec t h e  wave 

The time f a c t o r  f o r  

G 
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Thus i n  a time T 

has been reduced i n  v a l u e  by a f a c t o r  of exp(-1). 

i s  t h e  l i f e t i m e  of t h e  hydrogen atom corresponding t o  t h e  complex energy 

= %/(2l?) t h e  a b s o l u t e  square of t h e  wave func t ion  

I n  t h i s  s ense  

0 

To 

Ec 

of t h e  o u t e r  t u rn ing  po in t )  and each one has  a rate of i o n i z a t i o n  l / ~  

then t h e  outward f l u x  

I f  t h e r e  are N (E ) hydrogen atoms (with t h e i r  e l e c t r o n  i n s i d e  o c  

Q 9  

I o ( E c )  is  given by 

I n  t h e  v i c i n i t y  of t h e  resonance energy, t h e  phase s h i f t  changes 

It i s  convenient t o  express t h e  phase s h i f t  r a p i d l y  w i t h  t h e  energy. 

as t h e  sum of a slowly varying component a (E) which i s  a n a l y t i c  i n  

t h e  complex energy, and a r a p i d l y  varying component a (E) which is n o t  

a n a l y t i c .  Thus5 

0 

r 

It is  easy t o  show from arguments w i t h  r e s p e c t  t o  t h e  a n a l y t i c i t y  of 

t h e  wave func t ion  wi th  r e spec t  t o  t h e  energy t h a t  (except when t h e  

Ec * 
resonance energy is  degenerate) B(E) has a simple when E = 

(37 )  
1 B(E)  = -z (E - Er $. i r )  exp(- i ao(E))C’ 

S imi l a r ly ,  i t  must be  p o s s i b l e  t o  expand A(E) i n  a Taylor’s series i n  

E - E f o r  ene rg ie s  c l o s e  t o  E a Thus, w e  can express A(E) i n  t h e  

form 

C G 

1 
A(E) = T[(a+ib)  + (c+if)(E - Er + i f ) ]  e x p ( i  ao(E))Cq (38) 
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The cons t an t s  a , b , c ,  and f are uniquely determined by t h e  requirement 

t h a t  f o r  real  va lues  of E ,  w e  must have A(E) = B(E) e With t h e s e  

va lues  f o r  t h e  cons t an t s ,  f o r  complex (as w e l l  as real) ene rg ie s ,  

* 

(39) 
1 ACE) = 7 (E - E - i r )  e x p ( i  ao(E))C9 r 

Now f o r  real  energies ,  Eqs. (36) and (38) agree  with Eq. (33) i f  

and 

I n  passing through t h e  e n t i r e  resonance region (going from energies  

less than, t o  ene rg ie s  g r e a t e r  than E ) $  a i n c r e a s e s  by TT Also, r r 

When E = Ec i t  fol lows from Eqs. (321, (34),  and ( 3 9 )  t h a t  t h e  

wave f u n c t i o n  i s  

Thus, according t@ Eq, (119, t h e  corresponding f l u x  is 

However, i n  order  f o r  Eqs. (35) and ( 4 4 )  t o  be c o n s i s t e n t ,  

(449 
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Now l e t  us  r e t u r n  to  real  va lues  of t h e  energy c lose  t o  Er"  

t o  Eqs. ( 3 4 ) ,  ( 3 9 1 ,  and ( l l ) ,  t he  f l u x  corresponding t o  t h e  outgoing 

According 

component of t h e  wave func t ion  is 

Io(E)  = 3" ?(C')21-l-1 [ l  4- (E-Er)/r f -  j21 
Since t h e r e  is  no i n t e r f e r e n c e  between Io and t h e  f l u x  of t h e  incoming 

component of t h e  wave funct ion ,  t h e  l i f e t i m e  of t h e  state i s  

.r@) = No@> (47) 

I f  w e  a d j u s t  t h e  normalizat ion so  t h a t  No(E) = No(Ec), then  
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V. NUMERICAL RESULTS 

For t h e  case n = 5 ,  nl = 3,  n2 = 0 ,  m = 1, we have numerically 

1 -lc2 c a l c u l a t e d  No(E) (according t o  Eq. (7) )  and Io = 

~ / T ( E )  = Io (E) /No(E> .  Fig.  2 shows a p l o t  of l /T(E) ve r sus  E f o r  

a f i e l d  s t r e n g t h  of 10 

T 1-1 This  gives  

6 volts /cm ( 1 . 9 4 4 8 ~ 1 0 - ~  a .u .> .  The minimum value 

of l / ' r  = I'f2 a W e  d e f i n e  E as the energy a t  which t h i s  minimum 

occurs.  It appears  from Fig. 2 t h a t  t h e  parabola corresponding t o  

r 

Eq, (48) i s  indeed an excellent approximation t o  l /T(E) f o r  values of 

I E - E ~ ~  as l a r g e ' a s  3r.  

and 2 which 1 Table I g ives  t h e  values of Er I r 
T , nit: not 

w e  c a l c u l a t e d  f o r  very s t r o n g  e lec t r ic  f i e l d s  ranging i n  i n t e n s i t y  

5 5 from 8x10 t o  11x10 volts/cm. 

The l i f e t i m e  'c is  compared with t h e  c a l c u l a t i o n s  of Bai ley,  Hiskes, 

and Riviere17 who used t h e  method of Rice and Good" which is  e s s e n t i a l l y  

a f i r s t - o r d e r  WKB approximation t o  both the  1; and rl equations.  However, 

they made a number 

making a number of 

1; 
(m -1) terms i n  v 2 

of c o r r e c t i o n s  t o  t h e  s tandard WKB t reatment  while  

additional approximations such as omitaing t h e  

and V e Bekenstein and ?Krieger poine out  tihat at: 3 
rl 

weak f i e l d s ,  t h e  Rice and Good treatment only g ives  t h e  energy t o  a 

p rec i s ion  comparable t o  Rayleigh-Schrodinger p e r t u r b a t i o n  through the  

f i r s t  o rde r .  Thus, t h e  disagreement a t  P = 11x10 vol t lcm is  n o t  sur-  

pr  i s  ing - 
5 

Fig. 3 shows t h e  v a r i a t i o n  of loglo('t) w i th  F,  When t h e  f i e l d  

5 s t r e n g t h  is equal  t o  I?: = 11,73x10 vofits/cm, t h e  e f f e c t i v e  energy 



Figure 2. The rate of i o n i z a t i o n  l / ' r  versus  E f o r  t h e  case of n=5, n1=3, n2=0, and m = l  i n  a f i e l d  of 
106 volts/cm. 
t h e  ca lcu la ted  va lues .  The dot ted  l i n e  corresponds t o  t h e  Weisskopf-Wigner parabola as 
given -by E4. ( 4 8 )  

Here E, = - 0.01502415 a.u-.- and T - =  0.552~10-6 a.u. The s o l i d  l i n e  represents  

- .  - 
-. 

__ - - - _  - - - - - - -  
- - 

I 
- 4  

. -  
- ------ ___- . _ _ _ _ _  - "  . -  



TABLE I ,  

Here Eper t  
i n  t h e  f i e l d  s t r e n g t h ;  Z (3) i s  t h e  va lue  of Z1 ca l cu la t ed  through t h e  t h i r d  power of F making u s e  

of E r e  A l s o ,  T(BHR) i s  t h e  l i f e t i m e  as ca l cu la t ed  by Bai ley,  Hiskes, and Rivierel’; t h e  - -b corresponds 

Numerical Resu l t s  Calculated f o r  a Hydrogen Atom i n  t h e  S t a t e  n=5, n1=3, n = O s  and m = l .  

( 4 )  i s  t h e  Rayleigh-Schrodinger pe r tu rba t ion  energy ca l cu la t ed  through t h e  f o u r t h  power 
2 

E 

and Z correspond t o  E a The va lues  i n  
% t 3  E 1: 

t o  t h e  e r r o r  i n  reading t h e i r  graphs.  The T , 
paren thes i s  are given i n  atomic u n i t s ,  

J( 

F -E p e r t  ( 4 )  -E r r T T(BJm rlit I l O t  Zl(3)  

A A -1 -1 -1 v o l t s  / cm cm cm cm sec sec 

99 .826005 8 Ox10 5 3700 I) 03 3624.395 .000152 6 . 9 7 ~ 1 0 9 ~  6+1x10m8 12.5 

9 5x10 3587 e 69 3400 e 989 .0244 4*1xlo-10 13.3 75 .834196 

10 0 Ox10 5 3552 a 8 1  3297 e 419 .121 -7 8 78xlOiL1 l l+ lx lO- i l  13.7 68 .838000 
( 1 . 9 4 4 8 ~ 1 0 - ~ )  (.0161878) (.01502415) (5-52x10 ) (3 .63~10  ) (4.&5xPO - ) (25.9) (129) 

3517.78 3144 s 35 6.67 1 65xE05 -I1 5 + 1 ~ 1 0 - ~ i  14.3 60 .843645 10 e 5x10 
( 2 . 0 4 2 0 ~ 1 0 - ~ )  (.Ol60282) ( -0143267) (3 . 0 4 ~ 1 0 - ~ )  (6 .82~10  ) (1~925x10 1 (27 .SI (113) 

11 oX1o5 3483 48 2820.2. 419. 15  .O 49 .a60743 

( 1 . 5 5 6 0 ~ 1 0 - ~ )  (-0168586) (.01651396) (6 .92~10-’~)  (2 .88~10  ) (2:3+5x1O9) - (23,7) (188) 

5 

( 1 . 8 5 0 0 ~ 1 0 - ~ )  (.0163467) (,01549605) (l.llxlO-’) (1:525xlO7) (25,2) (142) 

5 

( 2 . 1 3 9 3 ~ 1 0 - ~ )  (.0158719) (,012850) ( 1 , 9 1 ~ 1 O - ~ )  ) (28.3) ( 93) 

* 2 .  9 2 The atomic u n i t  of f i e l d  s t r e n g t h  is  e/ao = 5.142~10 volt/cm, of energy is  e /ao = 219474.6 cm-’, 

3f(me4) = 2 . 4 1 8 9 ~ 1 0 - ~ ~  s e c ,  and of d i s t a n c e  is a = 0.52917 A[see Ref ,  ( 4 1 ,  p .  21. 
0 

N w 



t 

I 
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'" Figure  3 .  The v a r i a t i o n  of lagl ) with  F. Note thqt when t h e  f i e l d  

s t r e n g t h  is '  equal > I  and t h e  atom can ion iqe  c l b s s i -  
I' 

\ ' ' c a l l v ,  t h e  l i f e t i m e  i s  verv  small. 
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Figure  4 .  The Wave Function x (TI) f o r  t h e  case n=5, n - 3 j  nZ=O, and m = l  i n  a f i e l d  of 10 v o l  
- - - - -  _I_-____-__I L 

. -  - - 
n2 9m ~ 1- 

I n  (s)$ wher-e E--.015037 a,u. is  l e s s  than E r ,  t h e  f i r s t  node [ p o h t  b ]  occuq-*en~l .  >- 

E=-.015010 a.u, is g r e a t e r  than Er, t h e  f i r s t  node [po in t  b ]  occurs when TI 4 - TIot. 

I__ -1-II (b),  where _- . - 

- .. - .- - -  I 

- - 



~ . ... 
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of the  system is equal  t o  the  maximum value  of V and from the  stand- 

poin t  of c l a s s i c a l  mechanics t h e  atom can spontaneously ion ize .  
rl 

Thus, 

as shown i n  t h e  f i g u r e ,  t h e  l i f e t i m e  of an atom would be  extremely 

small i f  F were g r e a t e r  than I?” 
0 

It is not s u r p r i s i n g  t h a t  a t  t h e  very high f i e l d  s t r eng ths  of 

4 5 more than twice F = 4,27x10 vol ts /cm o r  F’ = 5 . 1 4 ~ 1 0  vol ts /cm,  which 

w e  cons ider ,  t h e  agreement between t h e  resonance energy and t h e  energy 

0 0 

ca lcu la t ed  by t h e  Rayleigh-Schrodinger pe r tu rba t ion  series i s  f a i r  

t o  poor. In c a l c u l a t i n g  E~~~~ (4) = E‘’) + F ~ ( l )  + . a + F 4 E ( 4 )  

t h e  zero through t h i r d  order  energ ies  a r e  given i n  Ref. ( 4 ) .  The 

fou r th  order  energy i s  3 

4 2 2 2 2 5487n e35182n -1l34m (n -n 1 +1806n (nl-n2) 10 
1 2  n E ( 4 )  =I 

7 10 n1’ n2 9m 10241-1 2 
- 3402n 2 2  m -3093(nl-n2) 4 -549m 4 +5754(n -n ) 2 

1 2  

- 8622m2+16211 

(50) 

One of t h e  most cur ious f e a t u r e s  of t h e  numericax ca l cu la t ions  

w a s  t h e  observat ion t h a t  t h e  f i r s t  node i n  x 
t h e  outer  tu rn ing  poin t  when t h e  epergy i s  very nea r ly  equal. t o  t h e  

(Q) is  loca ted  a t  
n2 9m 

resonant  energy. This i s  

is d i f f e r e n t  from zero w e  

node which would occur a t  

2 shown by F i g s ,  4 and 5 .  For eases where n 

would expect t h a t  it would be the  (n2+1)-st 

Er qOt when E = 
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FIGURE CAPTIONS 

Figure 1. Schematic Drawings of t h e  P o t e n t i a l  Energy Functions V and 

V f o r  D i f f e r e n t  Values of m t h e  a b s o l u t e  va lue  of t h e  

magnetic quantum number. 

r 
0 

Figure 2. The rate of i o n i z a t i o n  1l.e ve r sus  E f o r  t h e  case n=5, 

6 n193, n2=0, and m=9 i n  a f i e l d  of PO 

Er 
l i n e  r e p r e s e n t s  t h e  ca l cu la t ed  va lues .  

vol ts lcm.  

l' = 0 . 5 5 2 ~ 1 0 - ~  a .u .  

Here 

The s o l i d  = - 0.01502415 a .u .  and 

The do t t ed  l i n e  cor- 

responds t o  t h e  Weisskopf-Wigner parabola as given by 

Eq. ( 4 8 ) .  

Figure. 3 .  The v a r i a t i o n  of log (T) wi th  F e Note t h a t  when t h e  f i e l d  10 
2 s t t e n g t h  i s  equal  t o  I?: = Er/[4(Z-Z1)] and t h e  atom can 

i o n i z e  c l a s s i c a l l y ,  t h e  l i f e t i m e  is  ve ry  small. 

Figure 4. The Wave Function x 
m = l  i n  a f i e l d  of lo6 

(q) f o r  t h e  case n=5, nl=3, n2-0, and 

volts/cm. 
n2 rm 

I n  ( a ) ,  where E = - .015037 a p u .  

is less bhan Er t h e  f i r s t  node [po in t  b ]  occurs when 

q > qOt , I n  (b), where E = - .015010 a .u .  is g r e a t e r  than 

o t  * t h e  f i r s t  node [point  b ]  occurs when q < ?I Ea. 
Figure 5. The P o s i t i o n  ?I = b of t h e  F i r s t  Node i n  x (11) as a func t ion  

n, 9m 
rc. 

of E f o r  t h e  case n = 5,  nl = 3, n2 = 0 ,  and rn = 1 i n  a 

f i e l d  of 10 6 vol ts /cm,  Note t h a t  b 3 not when E = Ere 


